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Flow-Ecology Relationships

Lower Savannah-Salkehatchie River RBC, March 7th, 2024




« 146* fish species
« 1,092 invertebrate groups (many more species)



Rivers face many threats

Impoundment Urbanization Nonpoint pollution

]

Flow alteration Stormwater runoff



Monitoring helps sustain designated uses




Too much water to monitor!

TTTT

e >28,000 segments in SC
« >15,000 river miles
* And that's just wadeable streams (~84% of surface water in SC)



Too much water to monitor!




ISIMMS

Using aquatic organ
to learn about river

health




Bio-assessment: using aguatic
organisms to learn about river health

ASSESSMENT OF BIOTIC INTEGRITY USING FISH
COMMUNITIES

James R. Karr

ABSTRACT

Man's acthvites have had profiound, and wually negaave, mfluences on freshwater fishes from the smallent sreams 1o the
Iargest rivers. Some negatve eflects are due to contaminanis, whille others are asscclaied with changes In watershed hydmiogy,
lhabitst modifications, and alteration of energy sources upon which the aquatic biota depends. Regratsably, past ellorts to suakuate
effects of man’s activities on fishes have attempéed to use waber qualy as 2 surragate: for mone compeehensive blolc assessmer.
A mape refined biose assessmsent program is pequired for elfective protecsion of hestwater fsh nesources. An assessment sysbem
mropased here uses a series of fsh commurity attrbuies related 1o spedes composision and eoological structure to evaluate the
quality of an sguatic biota. In preliminary frizs this systern accurately refieched the stangs of fah communibes and the environmest

supporting tham

asdage of the Water Cuality

At Amendments of 1972
(PL92.500) stimulated many
efforls 1o mandtor the quafny of
water resource susterrs. Undar-
runately, these effors concen-
trated on development of
thresholds and criteria levels for
specific contaminants, often
besed on acute toxicity tess
The use af these criteria has
been aftacked on numeTous
grounds (Thurston et al. 1979,
fer examgple, they have not
taken into sceount naturally accurming gecgraphic vanation of
contaminants (g, ashestos, lron, zing), considered the syne-
gistic effects of numerows consaminants, nor considered suble-
thal effects {e g, reproduction, growth] of most contamenants.
In addition, monitoring of water quality parameters (nutients,
D03, temperature, pesticides, heavy metals, and other toxics]
odten misses shom-lerm events that may ba critcal to assessment
of biotie impacts. Finally, # is impossible to measure all factors
that may impact biofic integnty. In lact, much literaiure on chem-
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Icad cointaminants ts of questonable valise for setting waler qual-
ity standards for aquatic organisms (Gose 1980). Chermcal mon
Itoring mésses many of the man-indeced perturbations that
Imgpair use. For example, flow alterations, habitat degradation,
heated effiuents, and uses ks poser generaion are nof detectad
in chesrieal sampling, In shorl, eriteria that emphasie physical
and chemical attributes of water are unsuccesshul as sumogates
for measuring blote integeing [Kar and Dudley 1951).

Recent begislation (Clean Water Act of 1977, FL 95-217)
deardy calis for @ more refined approach when pollution is
defined as “the manmade or man-induced alteration of the
chermical, physical, biglogeal, and radiclogical Integrity of
waler " Despite this refnement, requlatary agencies have been
show to réplace the classical approach (unlform standards focus-
ing on coniaminant levels) with a more sophisticated and envi-
romanéndaly sound approach

The integrity of waler resousces can best be assessed by
evaluating the degree o which waters provide for benedicial
uses. Impartant uses as defined by society may include water
supply, recreational, and gther uses as well a5 the preservation
of fuluzg options for the wse of the resource. Since an ablligy to
sudtain a balanced biotic community is one of the best indicatars
af the potentiad for beneficial use, sophisticated monltoring pro-
grams should seak to assess “biotic integrity. "

This paper describes a procedure for monitoring water
resaurces using fish. My contention s that by carefully monitor-
ing fishes, ane can rapidly assess the health | “biotic imegrity”')
at a local water resource. In shorl, carefully planned monitoring
and assessment can rapidly and relatvely inespensively serse
as an exploraion assessment of water resource qualihy. Where
impared use &= suggested by biological monitefing, & more
nearly omplete mondtoring program can be implemented In
search of the causative agent(s).

WHY MONITOR FISH?

Bislegical eommunities rellect watershed conditions since they
are sénsitivee bo changes kn a wide array of envisonmental taciors.
Mary grewps of arganisms have been proposed as indicators of
environmental quality, but no smgle group has emenged as the
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FISH INDEX OF BIOTIC INTEGRITY SCORE
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Flow-ecology relationships
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Use of the relationships
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Purpose

« To provide insight on the potential response of organisms to the alternate
water withdrawal scenarios produced by SWAM.

« We aim to put the SWAM results into a biological context.

« High demand water use scenario: 100 to 60 cfs

Predict

25% loss of
species




How will this work? Step 1

Legend
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How will this work? S
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Ask RBC for a vote



How will this work? Step 3

Selected relationships
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Step 1: Quantity the flow-ecology relationships

Contents lists available at ScienceDirect

Science o
Total Environment

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Quantifying flow-ecology relationships across flow regime class and M)
ecoregions in South Carolina i

Luke M. Bower **, Brandon K. Peoples °, Michele C. Eddy €, Mark C. Scott °



Framework

* The ecological limits of hydrologic alteration (ELOHA).
~ Poffetal., 2010

Build a hydrologic foundation of streamflow and biological
~  data

B. Classify natural river types

C. Model and select flow ecology relationships



Biological Data:

* 492 Fish sites (streams &
rivers)
 DNR
8 biological response metrics

Legend

° Fish sites

A Macroinvertebrate sites

« 530 aquatic insect sites

HUC6 « DHEC

HUCS * 6 biological response metrics
Blue Ridge

Southern Coastal Plain
- Southeastern Plain

Middle Atlantic Coastal Plain

Piedmont




Hydrologic data

Tuesdaw!bu%i, 2021 11:30FT

Legend
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Build a hydrologic foundation of streamflow data

ER I I « WaterFALL model:
« rainfall-runoff model 30-year period

INTERNATIONAL

« Accounts for withdrawals, discharges, and
Table 2. Model Geospatial Tnputs reservoirs within the river network

Data Set Name Resolution Reference

24 hydrologic metrics

Hydrology Enhanced National Hydrography 2.1 km? within  Moore and Dewald,

Dataset Version 2 study area 2016
Land Cover 2016 National Land Cover Dataset  30-m grid Jinetal., 2019 ) F I OW reg I m e : TI m I n g : m ag n Itu d e .
Climate PRISM 4km Daily Temperature 4-km grid PRISM Climate .
and Precipiation 19852018 Group. 2019 frequency, rate of change, and duration
Soils Soil Survey Geographic Database  1:12,000 to USDA-NRCS, 2014
(SSURGO) 1:63.360
Subsurface National Weather Service (NWS)  Approximatel ~ Zhang et al., 2011
Parameters for applications of the Sacramento  y 4.7-km grid
Soil Moisture Accounting Model
(SAC-SMA)
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Predictability of flow metrics calculated using a distributed
hydrologic model across ecoregions and stream classes:
Implications for developing flow-ecology relationships
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Relevance of flow regime components

« Magnitude: MA1 (mean daily flow) and ML17
(base flow)

« Alteration of habitat
* Reduced water quality and higher mortality

 Duration: DL16 (duration of lov
 Alteration of connectivity
 Increased duration of low water ¢

* Timing: TL1 (timing of low flow
e Loss of access to habitats

 Disruption of life-cycle cues (spa’
migration) and decreases in recrt

—

-

* |Invasion of exotics



Framework

* The ecological limits of hydrologic alteration (ELOHA).
Poff et al., 2010

A. Build a hydrologic foundation of streamflow and biological
data

S Classify natural river types

C. Model and select flow ecology relationships




2. Classify natural river types

A. Flow-ecology relationships may differ among stream classes

A. Ecoregion

B. Hydrologic class




Framework

* The ecological limits of hydrologic alteration (ELOHA).
Poff et al., 2010

A. Build a hydrologic foundation of streamflow and biological
data

B. Classify natural river types

2 Model and select flow ecology relationships




ldentify relationships: some are informative
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ldentify relationships:
some are not informative
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ldentify relationships: remove
uninformative relationships
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Results summary

We found >180 informative relationships across SC

« Predicting responses Scenario Loss of Risk
species
« Defining biological response limits MD 15% Med
HD 25% High

Many of these differed among stream classes

All components of the flow regime were important to aquatic organisms

* magnitude, frequency, duration, timing, and rate

Next steps:

« |dentify those relevant to the Lower Savannah-Salkehatchie

* Present these proposed relationships to the RBC




How will this work? Step 1

Hydrologic data
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How will this work? S
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How will this work? Step 3

Selected relationships
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