

January RBC Meeting Review

Flow-Ecology Relationships

- Four flow-ecology metrics were considered
 - Mean daily flow (MA1): Perennial runoff and Perennial Flashy
 - Timing of low flow (TL1): Perennial runoff
 - High flow pulse count (FH1): Perennial Flashy
 - High flow pulse duration (DH15): Perennial Flashy
- These were chosen based on:
 - relevance to water withdrawal and drought management;
 - strength of relationship
 - distribution (most stream classes and basin area represented)
 - calculable from SWAM output

How can we use these relationships?

- Defining biological response limits
 - Zones of low, medium, and high change in the biological condition of streams along flow gradients
 - Searching for areas along flow gradients that induce changes in the biological metric
- Predicting responses
 - If we alter flow by X amount what will be the biological response?

Middle Tyger River near Lyman

Scenario	Current	Predicted	% change	Bio Metric	Change in Bio	SE
UIF	98.35	107.83	9.6%	Richness	7.9%	7
HD 2070	98.35	69.85	-29.0%	Richness	-23.8%	7
Full	98.35	61.68	-37.3%	Richness	-30.6%	7
MD 2070	98.35	84.57	-14.0%	Richness	-11.5%	7

Middle Tyger River near Lyman

Scenario	Current	Predicted	% change
UIF	257	259	0.8%
HD 2070	257	256	-0.4%
Full	257	259	0.8%
MD 2070	257	254	-1.2%

Expected results: richness

- Up to 50% biodiversity loss in some streams at full allocation
- Replacement by common generalists & invasives

Green sunfish

Eastern mosquitofish

White sucker

Yellow Bullhead

Golden Shiner

Spartanburg Water System Reservoirs

	Month	Safe Yield Demands	2070 High Demand	_
		(MGD	(MGD)	
	Jan	66.1	57.0	
	Feb	65.3	57.0	
	Mar	65.9	70.4	aughn Creek
	Apr	66.9	56.5	aughn Cr
	May	74.1	61.0	2: Links
	Jun	80.0	68.2	Tryon
	Jul	83.8	69.0	
	Aug	81.0	65.5	
	Sep	80.5	65.7	54790
	Oct	74.1	62.7	olet River 11
	Nov	68.1	59.0	ver
10	Dec	64.8	52.8	River)
	Average	72.6	62.1	Jordan Creek
4	Robinson	Creek	90 Y	Cleek

Water User	Freq. of Shortage	Max Shortage (MGD)		
WS: Spartanburg	0.4%	36.9		

Safe Yield Scenario 1 (SY1) was calculated for the entire 3-reservoir system

Current Use: 72.6 MGD

Full Allocation: 65.8 MGD

WS: SJWD

SWS Scenario Demands (for reference)

<u>Scenario</u>	MGD				
Current	26.4				
2070 Mod	45.7				
2070 High	62.1				

Thicketty Creek

Modeled Drought Triggers

Greer – System effective storage is 4,484 MG, 4,248 MG, 3,776 MG, or 3,304 MG

SWS – Combined stream flow entering the reservoir system from the N. and S. Pacolet Rivers drops below 60, 40, 30, or 25 cfs

SJWD – Storage in Lake Lyman falls below 841, 840, or 836 feet

Red = User with 2070 High Demand shortages

Green = User with no 2070 High Demand shortages

High Demand Scenario 2070 Shortages With and Without Drought Management Plan (DMP) Triggers and Tiered Reductions in Demand

Wester Hear	Without DM	P Reductions	With DMP Reductions in Demand			
Water User	Freq. of Shortage	Max Shortage (MGD)	Freq. of Shortage	Max Shortage (MGD)		
WS: Greer*	7.1%	17.0	No Change			
WS: SJWD*	0.6%	18.3	No Change			
WS: Gaffney	1.1%	27.8	0.8%	19.2		
WS: Spartanburg	0.4%	36.9	0.1%	5.2		
GC Mid Carolina	0.2%	0.03	No Ch	nange		
GC: Pebble Crk.	0.1%	0.1	No Ch	nange		
GC: Fox Run	0.1%	0.02	No Ch	nange		

"No Change"
because no
rules were in
place to
release more
water from
Lake Robinson
(Greer) or Lake
Lyman (SJWD)

^{*} Additional data collection and analysis is being performed to evaluate modeled vs. actual operation of upstream reservoirs, and the effect on modeled shortages.

Timing of High Demand Scenario Shortages

	Maximum Shortage (MGD) for Each High Demand Scenario					Frequency of Shortage for Each High Demand Scenario						
Water User Name	2025	2030	2040	2050	2060	2070	2025	2030	2040	2050	2060	2070
WS: Gaffney	6.2	10.0	12.9	18.9	23.3	27.8	0.3%	0.3%	0.5%	0.7%	1.0%	1.1%
WS: Spartanburg	No shortage			15.0 6.9		No shortage				0.1% 0.1%		
WS: SJWD*	No shortage					No shortage						
WS: Greer*	No sho	ortage	4.2	9.3	13.3	17.0	No shortage 0.8% 2.6%		2.6%	4.4%	7.1%	
GC: Pebble Creek	0.1	0.1	0.1	0.1	0.1	0.1	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
GC: Fox Run CC	0.02	0.02	0.02	0.02	0.02	0.02	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
GC: Mid Carolina	0.03	0.03	0.03	0.03	0.03	0.03	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%

^{*} Additional data collection and analysis is being performed to evaluate modeled vs. actual operation of upstream reservoirs, and the effect on modeled shortages.

Vision and Goals Statements... Quiz!

What is the Broad RBC's Vision Statement?

- The Broad River Basin Council seeks to manage our water resources in order to protect public health, allow for growth, and provide opportunities for recreation.
- B resilience of the Broad River Basin to provide water resources for quality of life, while accounting for the ecological integrity of our shared water resources.
- The vision of the Broad River Basin Council is to promote the sustainable management of water resources under South Carolina's riparian-based water withdrawal laws while supporting the region's economy, protecting public health and enhancing the quality of life for all citizens.

Vision and Goals Statements... Quiz!

What are the three goals that we developed for the Broad RBC?

- Enhance the understanding of regional water issues and the need for support of policies and behaviors to protect resources through promotion and education.
- B Identify strategies to maximize water imports into the basin and eliminate water exports
- C Use sound science and data driven practice to support collaboration for all entities to effectively and efficiently manage the basin.
- Provide policy and legislative recommendations.