

What this info <u>is</u>

- Guidances based on best available data and analysis tools
- Based on models with compounding statistical uncertainty

- Representative of overall (30-year) flow regime characteristics
- Applicable to streams and small rivers (~86% of all SC waters)
- Relationships between organisms and flow

What this info *is not*

- Arbitrary recommendations from 'expert advice'
- Perfect.
- More data = less uncertainty
- Changing climate & land cover = more uncertanty

One-time withdrawal thresholds

- Applicable to large rivers and reservoirs
- Parsing out other factors that affect organisms
- Land use affects flow, etc.

How can we use these relationships?

- Defining biological response limits
 - zones low, medium, and high change in the biological condition of streams along flow gradients
 - Searching for areas along flow gradients that induce changes in the biological metric
- Predicting responses
 - If we alter flow by X amount what will be the biological response?

Mean daily flow (MA1): biological response limits

Lines defined by working group

• Performance measure

Stream classes

- Perennial runoff streams: characterized by moderately stabile flow and distinct seasonal extremes (Class 1, 615 stream segments)
- Stable baseflow streams: characterized by high precipitation, sustained high baseflows, and moderately high run-off (Class 3, 183 stream segments)
- Perennial flashy: characterized by moderately stabile flow with high flow variability (coefficient of variation in daily flows) (Class 4, 138 stream segments)
- Intermittent streams, classified by intermittent periods of no flow punctuated by flooding events (Class 5, 45 stream segments)

Flow-Ecology Relationships

- Four flow-ecology metrics were considered
 - Mean daily flow Average annual flow in a stream
 - Timing of low flow Time of year when low flow occurs on average
 - High flow pulse count How often high flows occur
 - High flow pulse duration Average length of time for a high flow event
- These were chosen based on:
 - relevance to water withdrawal and drought management;
 - strength of relationship
 - distribution (most stream classes and basin area represented)
 - calculable from SWAM output

Richness vs diversity (and evenness)

Abundance = 5

Richness = 5

Diversity = 1.61

Evenness = 1.0

Abundance = 15

Richness = 4

Diversity = 0.857

Evenness = 0.618

Abundance = 19

Richness = 5

Diversity = 1.58

Evenness = 0.98

What does loss of richness mean?

Abundance = 10

Richness = 5

Diversity = 1.61

Evenness = 1.0

- Species are 100% extirpated from a designated geographic area
- Loss of both richness and diversity

Abundance = 6 Richness = 3 Diversity = 1.1

What does loss of diversity mean?

Abundance = 19

Richness = 5

Diversity = 1.58

Evenness = 0.98

- Richness is maintained
- Diversity is lost

Abundance = 12 Richness = 5 Diversity = 1.23

Fish species richness

		Stream Gauge								
				Middle Tyger River near		Enoree River at				
		N Pacolet n	ear Fingerville	Lyman		Whitmire		Mill Creek		
Fish Richness	Scenario	% change	SE	% change	SE	% change	SE	% change	SE	
	UIF	12.7	7	7.9	7	-2.7	7	5.3	9	
	MD 2070	-9.3	7	-11.5	7	1.6	7	0.5	9	
	HD 2070	-15.9	7	-23.8	7	1.9	7	-5.3	9	
	Full	-23.6	7	-30.6	7	-2.9	7	-6.8	9	

Sensitive to changes in flow

Could be as high as -18.5 or as low as -4.5

Could be as high as -37.6 or as low as -23.6

Mean daily flow (MA1): biological response limits

 Lines defined by working group

 Consider this to be a performance measure where rapid changes are likely to occur

Do not interpret y-axis

N. Pacolet near Fingerville

Scenario	Current	Predicted	% change	Bio Metric	Change in Bio	SE
UIF	319.65	368.91	15.4%	Richness	12.7%	7
HD 2070	319.65	257.78	-19.4%	Richness	-15.9%	7
Full	319.65	227.65	-28.8%	Richness	-23.6%	7
MD 2070	319.65	283.39	-11.3%	Richness	-9.3%	7

Middle Tyger River near Lyman

Scenario	Current	Predicted	% change	Bio Metric	Change in Bio	SE
UIF	98.35	107.83	9.6%	Richness	7.9%	7
HD 2070	98.35	69.85	-29.0%	Richness	-23.8%	7
Full	98.35	61.68	-37.3%	Richness	-30.6%	7
MD 2070	98.35	84.57	-14.0%	Richness	-11.5%	7

Little River

Scenario	Current	Predicted	% change	Bio Metric	Change in Bio	SE
UIF	4.6	4.6	0.0%	Nest Spawn	0.0%	15
HD 2070	4.6	4.4	-0.04%	Nest Spawn	4.5%	15
Full	4.6	4.4	-0.04%	Nest Spawn	4.5%	15
MD 2070	4.6	4.6	0.0%	Nest Spawn	0.0%	15

N. Tyger River below Wellford

Scenario	Current	Predicted	% change	Bio Metric	Change in Bio	SE
UIF	47.12	51.45	9.2%	Richness	7.6%	7
HD 2070	47.12	47.24	0.3%	Richness	0.2%	7
Full	47.12	18.29	-61.2%	Richness	-50.3%	7
MD 2070	47.12	49.84	5.8%	Richness	4.7%	7

Fish diversity comparison

Broad River Basin

- 35 species collected at 20 sites in upper Broad River basin
- Average 14 species per site

Conservation now to avoid regulation in the future

ESA definition of "Take" and "Incidental Take"

- Take as defined under the ESA means "to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct."
- Incidental take is an unintentional, but not unexpected, taking.

