

Overview of the Broad Basin Surface Water Quantity Model

Simplified Water Allocation Model (SWAM)

- Developed as a desktop tool to facilitate regional and statewide water planning and allocation
- SWAM calculates physically and legally available water, diversions, storage, consumption and return flows at userdefined nodes
- From 2014 to 2017, all eight South Carolina surface water quantity models were built in the SWAM platform
- Model updates were performed in 2020-21

Surface Water Model Access

- Available for download at: http://hydrology.dnr.sc.gov/surface-water-models.html
- Also available for download:
 - SWAM User's Manual
 - Model reports for each basin
 - Supplementary technical memoranda

Broad Basin Surface Water Model Overview

Water Allocation Modeling is:

- Water balance calculations of physical flow
- Water rights calculations of legally available flow
- Demands, withdrawals, and return flows
- Reservoir storage
- Stream networks, multiple "nodes"
- Data intensive

Broad Surface Water Model Overview

Water Allocation Modeling is not:

- Rainfall-runoff calculations
- Hydrologic routing calculations
- Groundwater hydrology modeling
- Water quality modeling

In Support of Broad River Basin Planning, the Model Will be Used to:

- Assess current supply availability and shortages across a range of hydrologic conditions (1929 through 2019)
- Assess potential impacts of a "full allocation" scenario
- Assess a range of future potential scenarios with respect to changes in growth and climate (as they influence water demand)
- Evaluate and help prioritize water management strategies

Broad Model Inputs and Supporting Information

- USGS daily flow records
- Historical operational data
 - Withdrawals (municipal, industrial, thermoelectric, agricultural, golf courses, hatcheries)
 - Wastewater discharges and return flows
 - Transfers in and out of the basin
- Reservoir characteristics and operating rules
- Subbasin characteristics (from GIS)
 - Drainage area
 - Land use
 - Basin slope

Main Stem and Major Branches

Primary Tributaries

Municipal, Industrial, and Thermoelectric Withdrawals

Agriculture and Golf Course Irrigation Withdrawals

Wastewater Discharges and Returns

Broad River

SWAM Calculations: Supply

- Physically available flow is a function of:
 - upstream tributary inflows,
 - reach gains and losses,
 - upstream diversions, withdrawals, returns, and storage

SWAM Calculations: Supply

WS: Tryon • Legally available flow is a function of: North Pacolet River (Vaughn Creek) Lake Lanier WS: ICWD Water rights / permit limits Pacolet River (S. Pacolet River) WS: Landrum O'Tryon Storage rights IR: Hyder Austin Spartanburg Municipal 54500 Minimum Instream flow requirements Middle Tyger Lake Bowen 54790 Reservoir #1 S. Pacolet River 11 Downstream priority water uses Tyger River (N. Tyger River) Spartanburg Water User Lawsons Fork Lyman Source Water 1 | Source Water 2 | Source Water 3 | Source Water 4 | Source Water 5 | Return Flows | cake Cooley Preference #1 Source Water Type Diversion **Priority Date** Source Stream: Location Direct River Pacolet River 17.99799919 1/15/1900 Reservoir (mi) Groundwater Permit Limit Diversion ☐ Seasonal Permit Capacity Minimum Flow Requirements 750 10000000 ✓ Storage Withdrawal Permi (MGM) (CFS)

SWAM Calculations: Demand

- Water User Object:
 - Node-based demand, use and returns

SWAM Calculations: Demand

- M&I User Object:
 - Municipal and industrial water demands (prescribed monthly mean)

SWAM Calculations: Reservoirs

Reservoir Object:

Dynamic water balance, water supply pool, customized operating rules

SWAM Calculations: Demand

- Ag User Object:
 - Agricultural water demands (prescribed monthly mean repeated time series)

Model Calibration

- Calibration performed for multiple sites across wide range of hydrologic conditions
- Key calibration parameters = reach gain/loss factors (hydrology)

2021 Surface Water Model Updates

- Extended baseline hydrology through 2019 (added 6 years)
- Updated monthly mean water demands based on recent water use data
- Updated permit and intake location information
- Removed inactive permittees
- Added new permittee:
 S.C. Dept. of Corrections –
 Walden Farm
- Software update

Model Limitations

- Greater uncertainty in predictions for ungaged reaches compared to gaged
- Model not designed for reach routing of flow changes at a daily or subdaily timestep
- Greater uncertainty in supply availability (and "shortage") predictions associated with small stream withdrawals compared to larger river and reservoir withdrawals
 - e.g. offline irrigation ponds
- Baseline model assumes past hydrologic variability is representative of future hydrologic variability (stationary climate)

Surface Water Scenarios

Base Scenarios

- Current Surface Water Use Scenario
 - Uses most recent 10-yr average withdrawals (as reported by month)
- Permitted and Registered Surface Water Use Scenario
 - Uses current fully-permitted and registered amounts
- Business-as-Usual Water Demand Projection Scenario
 - Future water demand projection based on moderate growth and normal climate
- High Water-Demand Projection Scenario
 - Future water demand projection based on high growth and hot/dry climate

Additional scenarios may be identified and requested by the RBC

Performance Measures

Assessment of simulation results will focus on quantifying key performance measures for multiple reaches of interest across the basin.

Example / Suggestions:

- Percent change in a monthly minimum flow, 5th percentile flow, mean, and/or median flow
- Percent change in seasonal or monthly flows
- Percent change in surface water supply
- Percent change in mean annual shortage or mean percent shortage
- Change in the number and magnitude of excursions below 20, 30 and 40 percent mean annual daily flows and/or 7Q10 flow
- Change in number of water users experience a shortage
- Change in the average frequency of shortage
- Percent of time recreational facilities were unavailable on a stream reach

Reaches of Interest

Specific stream reaches that may have no identified *Surface Water Shortage* but experience undesired impacts, environmental or otherwise, determined from current or future water-demand scenarios or proposed water management strategies.

Could be related to:

- Recreational flows
- Ecological / in-stream flows
- Designation as a Scenic River

Upcoming Meeting Schedule, Topics and October Field Trip

Tentative Itinerary for October 13 RBC Field Trip

9:00 am	Lake Blalock Park – Kick-off & Safety briefing – 1925 Sandy Ford Rd, Chesnee, SC 29323
9:15 am	Paddle / Pontoon Excursion from Lake Blalock Boat Landing to Lake Blalock Dam
10:45 am	Overview of Lake Blalock Dam and Intake Area
11:15 am	Board Bus (from 5401 Old Griffin Rd, Chesnee, SC 29323) – Travel to RB Simms Plant
11:30 am	Arrive at RB Simms Plant (390 Spartanburg Waterworks Rd, Chesnee, SC 29323)
11:35 am	Overview of dam, new Water Supply Intake & Advanced Oxidation System
12:10 pm	Board Bus - Lunch at SWS Pavilion #1 (183 Chigger Creek Rd, Chesnee, SC 29323)
12:50 pm	Board Bus for travel to Strawberry Hill USA (3097 Hwy 11 W, Chesnee, SC 29323)
1:05 pm	*Arrive at Strawberry Hill USA (Cooley Farms) for overview of Agricultural Irrigation (Tentative)
2:05 pm	Board Bus - Return travel to Lake Blalock Park (1925 Sandy Ford Rd, Chesnee, SC 29323)
2:35 pm	Adjourn

Tentative Phase 1 Meeting Schedule and Topics

Meeting	Date	Topics	Location
Field Trip	Oct 13	Lake Blalock Paddling and RB Simms Plant	
Training	Oct 27, 28, 31 or Nov 1	SWAM Training for interested RBC Members	Columbia
RBC Meeting	Nov 10	Proposed flow –ecology relationships Review of surface water modeling planning scenario results	TBD